The courses are also categorized as "related" or "focused" -- "related" courses are those that relate to sustainability. The course description provided is often only an excerpt or a shortened version of the full course description. This list includes courses from Fall 2011 through Spring 2014. Courses added in 2014 are highlighted in red. Many courses are offered repeatedly, but many also change over time. The semester that the courses are offered (F, SP, etc.) is also a holding carryover. This list is intended as a resource for students interested in taking courses that are related to sustainability, but not as a planning tool. To check if a course is being offered, use the Schedule of Classes (https://schedulebuilder.berkeley.edu/), or search Berkeley Academics (https://catalog.berkeley.edu/). The columns are also categorized as "related" or "focused" -- related courses are only included if they relate to sustainability. The short version of the full course description that can be found in the Course Catalog (https://depts.berkeley.edu/) department page for each course, and often highlights the reason that the course is on this list. Therefore, for "related" courses, it is highly advisable to read the full course description.

Related Keywords
- Agriculture, Economics
- Environmental Management
- Sustainability
- Environmental Science
- Energy, Climate Change
- Food Security
- Water
- Global Sustainability
- Climate Change
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
- Sustainability
- Environmental Science
- Biotechnology
- Agriculture
- Energy
- Water
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Focuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV ENG 217</td>
<td>Environmental Chemical Kinetics SP</td>
<td>Estimation of environmental reaction rates. Development of models of pollutant behavior in complex natural systems</td>
<td>Focused Chemistry, Pollution, Environment, Modeling</td>
</tr>
<tr>
<td>EPS 170AC</td>
<td>Crossroads of Earth Resources and Society EV</td>
<td>Evolution and diversity of attitudes about resource development, environmental management, and conservation</td>
<td>Focused Resources, Development, Management, Conservation</td>
</tr>
<tr>
<td>CIV ENG 252</td>
<td>Land Use Controls F</td>
<td>Theory, practice and impacts of zoning, growth management, land banking, development systems, and other techniques of land use control</td>
<td>Related Management, Land, Development</td>
</tr>
<tr>
<td>DEMOG 110</td>
<td>Introduction to Population Analysis F</td>
<td>Life tables, fertility and nuptiality measures, age pyramids, population projection, measures of fertility control</td>
<td>Related Fertility, Analysis, Population</td>
</tr>
<tr>
<td>EPS C181</td>
<td>Atmospheric Physics and Dynamics SP</td>
<td>Processes that determine the structure/circulation of the Earth's atmosphere including the role of water in the energy/radiation balance</td>
<td>Related Atmospheric, Water, Energy, Global</td>
</tr>
<tr>
<td>CIV ENG 218C</td>
<td>Air Pollution Modeling SP</td>
<td>Theory and practice of mathematical air quality modeling</td>
<td>Related Air, Pollution, Modeling</td>
</tr>
<tr>
<td>CIV ENG 240</td>
<td>Civil Engineering Materials F</td>
<td>Differences and similarities in response to loading and environmental effects on concrete, wood, and steel</td>
<td>Related Structures, Materials</td>
</tr>
<tr>
<td>EPS 209</td>
<td>Matlab Applications in Earth Science SP</td>
<td>Includes riverbed characterization, landslide risk analysis, and geospatial and seismic data analysis</td>
<td>Related River, Water, Earthquake, Data, Analysis</td>
</tr>
<tr>
<td>CIV ENG C106</td>
<td>Air Pollution F</td>
<td>Introduction to air pollution and the chemistry of earth's atmosphere</td>
<td>Related Pollution, Atmospheric, Chemistry, Air</td>
</tr>
<tr>
<td>CY PLAN 257</td>
<td>Environmental Chemistry F</td>
<td>Introduction to the behaviors of gases and particular air pollutants, with applications to understanding the fate of pollutants and even</td>
<td>Related Chemistry, Air, Pollution, Environmental</td>
</tr>
<tr>
<td>CY PLAN 256</td>
<td>Healthy Cities F</td>
<td>Inquiry to influences of urban population health; analysis of determinants; roles of city planning and public health agencies in research</td>
<td>Related Health, Planning, Research</td>
</tr>
<tr>
<td>EPS C242</td>
<td>Glaciology</td>
<td>Use mechanics of glacial systems to examine glaciers as geomorphologic agents and as participants in climate change</td>
<td>Focused Glaciers, Climate</td>
</tr>
<tr>
<td>CIV ENG 173</td>
<td>Groundwater and Seepage F</td>
<td>Intro to principles of groundwater flow, including groundwater geology, contaminant transport, and design of waste containment systems</td>
<td>Related Groundwater, Pollution, Waste</td>
</tr>
<tr>
<td>EPS C240</td>
<td>Geologic Oceanography</td>
<td>Includes isotope measurements in the context of terrestrial, aquatic, and marine ecological processes and problems</td>
<td>Related Isotope, Chemistry, Water, Ecology, Problems</td>
</tr>
</tbody>
</table>

- **CY PLAN 209**: Urban Design in Planning
- **CIV ENG 211**: Urban and Regional Transportation Planning
- **CIV ENG 212**: Urban and Regional Transportation Planning
- **CIV ENG 213**: Urban and Regional Transportation Planning
- **CIV ENG 214**: Urban and Regional Transportation Planning
- **CIV ENG C106**: Air Pollution
- **CIV ENG 107**: Air Pollution
- **CIV ENG 108**: Air Pollution
- **CIV ENG 211L**: Air Pollution
- **CIV ENG 211R**: Air Pollution
- **CIV ENG C106**: Air Pollution
- **CIV ENG 107**: Air Pollution
- **CIV ENG 108**: Air Pollution
- **CIV ENG 114**: Air Pollution
- **CIV ENG 217**: Environmental Chemical Kinetics SP
- **EPS 170AC**: Crossroads of Earth Resources and Society
- **EPS C181**: Atmospheric Physics and Dynamics
- **EPS C241**: Stable Isotope Ecology SP
- **EPS C242**: Glaciology
- **CIV ENG 218C**: Air Pollution Modeling SP
- **EPS 209**: Matlab Applications in Earth Science SP
- **CIV ENG C106**: Air Pollution F
- **EPS C241**: Stable Isotope Ecology SP
- **EPS C242**: Glaciology
- **CIV ENG 252**: Land Use Controls F
- **EPS C181**: Atmospheric Physics and Dynamics SP
- **EPS C241**: Stable Isotope Ecology SP
- **EPS C242**: Glaciology
- **CIV ENG 218C**: Air Pollution Modeling SP
- **EPS 209**: Matlab Applications in Earth Science SP
- **CIV ENG C106**: Air Pollution F
- **EPS C241**: Stable Isotope Ecology SP
- **EPS C242**: Glaciology
- **CIV ENG 252**: Land Use Controls F
- **EPS C181**: Atmospheric Physics and Dynamics SP
- **EPS C241**: Stable Isotope Ecology SP
- **EPS C242**: Glaciology
Seminars for the presentation and discussion of original work by faculty, visiting scholars, and graduate students. Related Environmet, Colloquium.

Focused Forest Operations Management:
Planning, design, and implementation of activities such as road building, forest harvesting, erosion control, and fire suppression. Related Forests, Fire, Planning, Management.

Resources, Use, Sociology, Analysis.

ESPM:

C205 Quantitative Methods for Ecological and Environmental Modeling:

ENVSCI:

125 Environments of the San Francisco Bay Area:
Emphasis on the interaction of physical elements, their modification by humans, and problems deriving from human use. Related Change, Problems, Local.

ESPM C211 Modeling Ecological and Meteorological Phenomena:

ESPM 262 Race, Identity, and the Environment:
Foundations of environmental ideas and attitudes and their connections to contemporary environmental practices. Related Race, Environment.

ESPM 264 Silviculture Seminar:
A seminar covering various aspects of silviculture and related issues. Related Silviculture.

ESPM 185 Applied Forest Ecology:
Silviculture as a tool to meet multiple resource and ecosystem management objectives. Related Silviculture, Ecosystem, Management, Forests.

ESPM 277 Advanced Topics in Conservation Biology:
A graduate level seminar covering advanced topics in conservation of biodiversity, focused on designing protected area networks. Related Conservation, Biodiversity.

ESPM C225 Isotopics:

ESPM 187 Restoration Ecology:
Ecological theories for ecological restoration, focus on field site management and design with social, political, and economic factors. Related Theory, Design, Site.

ESPM 226 Interdisciplinary Food and Agriculture Studies:
How farm management, government policies, supply chains, and climate influence risks like climate change, agrobiodiversity, and more. Related Farms, Management, Climate, Risk, Agriculture.

ESPM 281 Seminar in Wildlife Biology and Management:
Reports and discussion of recent studies in wildlife biology and management. Related Biology, Management.

ESPM 174 Design and Analysis of Ecological Research:
Surveys major designs and analyses for biological field and laboratory studies. Related Research, Analysis, Ecology.

ESPM 175A Senior Research Seminar in Environmental Sciences:
Lectures and assignments emphasize research design, data analysis, scientific writing, and scientific communication. Related Research, Data, Analysis, Writing.

ESPM 175B Senior Research Seminar in Environmental Sciences:
Lectures and assignments emphasize research design, data analysis, scientific writing, and scientific communication. Related Research, Data, Analysis, Writing.

ESPM 253 Advanced Topics in Environmental Science and Management:
Inference of environmental history, and relationships between environmental history, philosophy, ethics, ecology, and policy. Related Science, History, Ethics, Policy.

ESPM 250 Environmental History:
Includes theories of environmental history, and relationships between environmental history, philosophy, ethics, ecology, and policy. Related History, Philosophy, Ethics, Policy.

ESPM 233 Geographic Information Systems for Environmental Science and Management:
Review the GIS basics with special reference to data used in managing California environments, and apply this to a project. Related GIS, Data, Environment, California.

ESPM 290 Special Topics in Environmental Science, Policy, and Management:
Study and critical analysis of topics, research, and texts pertinent to environmental science, policy, and management. Related Research, Analysis, Environment.

ENVSCI 84 Sophomore Seminar:
Seminar offers opportunity for intellectual contact between environmental science faculty members and students in their second year. Related Environment.

ENVSCI 10 Introduction to Environmental Sciences:

ENVSCI 125 Geographic Information Systems for Environmental Science and Management:
Review the GIS basics with special reference to data used in managing California environments, and apply this to a project. Related GIS, Data, Environment, California.

ENVSCI 175A Senior Research Seminar in Environmental Sciences:
Lectures and assignments emphasize research design, data analysis, scientific writing, and scientific communication. Related Research, Data, Analysis, Writing.

ENVSCI 175B Senior Research Seminar in Environmental Sciences:
Lectures and assignments emphasize research design, data analysis, scientific writing, and scientific communication. Related Research, Data, Analysis, Writing.

ENVSCI 250 Environmental History:
Includes theories of environmental history, and relationships between environmental history, philosophy, ethics, ecology, and policy. Related History, Philosophy, Ethics, Policy.

ENVSCI 233 Geographic Information Systems for Environmental Science and Management:
Review the GIS basics with special reference to data used in managing California environments, and apply this to a project. Related GIS, Data, Environment, California.

ENVSCI 290 Special Topics in Environmental Science, Policy, and Management:
Study and critical analysis of topics, research, and texts pertinent to environmental science, policy, and management. Related Research, Analysis, Environment.

ENVSCI 84 Sophomore Seminar:
Seminar offers opportunity for intellectual contact between environmental science faculty members and students in their second year. Related Environment.

ENVSCI 10 Introduction to Environmental Sciences:

ENVSCI 125 Geographic Information Systems for Environmental Science and Management:
Review the GIS basics with special reference to data used in managing California environments, and apply this to a project. Related GIS, Data, Environment, California.
FOOD, NUTRITION, GLOBAL F, SP
Increase understanding and appreciation of water resources and contribute to informed decision-making about water in California. Focused: Water, California, Resources, Planning.

LDARCH 200A Fundamentals of Landscape Design
Topics include pedestrian and vehicular circulation, conservation, movement of water, recreation use, and creation of views. Related: Transportation, Conservation, Water, Use.

IAS 157AC Engineering, the Environment, and Society

GEO 140A Physical Landscapes: Process and Form
How physical landscapes change and are susceptible to human modifications, which are often unintentional. Related: Land, Change.

LEGALST 176 Twentieth-Century American Legal and Constitutional History
Includes New Deal legal innovations, tort liability, environmental regulation, judicial reform, and federalism. Related: Law, Environment, Regulation.

GEO 142 Climate Dynamics
Includes observations of climate system; earth's energy balance; atmospheric radiative transfer; surface energy balance; hydrologic cycle; and atmospheric general circulation. Related: Climate, Energy, Atmospheric, Water, Global.

LNS C70Y Earthquakes in Your Backyard
Includes earthquake hazard and risk, with particular emphasis on the situation in California. Related: Earthquakes, California, Hazard, Risk.

GEO C145 Geological Oceanography
Sources/composition of marine sediments, sea-level change, imprint of climatic zonation on marine sediments, ocean floor resources. Related: Oceans, Change, Climate, Resources.

GEO 167 Africa: Ecology and Development
Includes rural development, ecological change, demography, migration, urban growth, agricultural development, and peasant economy. Related: Development, Ecology, Agriculture, Africa.

NUSCTX 110 Toxicology
Modern toxicology and its applications in evaluating the safety of foods, additives and environmental contaminants. Related: Toxicology, Safety, Food, Environment.

NUSCTX C119/C219 Advanced Toxicology
Interpret data and apply knowledge to evaluate risk from exposure to toxic chemicals, including drugs and environmental contaminants. Related: Toxicology, Risk, Chemistry, Drugs, Environment.

LDARCH 12 Environmental Science for Sustainable Development
The scientific basis of sustainability, explored through study of energy, water, food, natural resources, and built environment. Related: Sustainability, Energy, Water, Food, Resources.

LDARCH 130 Sustainable Landscapes and Cities
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

LDARCH 232 The Landscape As a Sacred Place
Visual/cultural analysis of landscapes and problems related to sustainable design development, with emphasis on highly valued places. Related: Culture, Development, Sustainability, Analysis, Landscape.

LDARCH 12 Environmental Science for Sustainable Development
The scientific basis of sustainability, explored through study of energy, water, food, natural resources, and built environment. Related: Sustainability, Energy, Water, Food, Resources.

GEO 172 Global Environmental Politics
Processes that determine the structure of interaction of the earth's atmosphere including the role of water in the global energy/matter cycle. Related: Politics, Global, Environment, Water.

GEO 102 Physical Geology and Evolution
Intrusive and extrusive igneous rocks, metamorphic rocks, weathering and erosion, the structure of the earth's outer layers, and the earth's surface processes. Related: Geology, Evolution, Rocks, Weathering.

GEO 103 Principles of Meteorology
A study of the atmosphere as a system. Related: Meteorology, Atmosphere, System.

GEO 105 Geophysical Systems

GEO 113A Introduction to Geophysics
An introduction to the study of the earth and the physical processes that operate on it. Related: Geophysics, Earth, Processes.

GEO 122 Environmental Science for Sustainable Development
The scientific basis of sustainability, explored through study of energy, water, food, natural resources, and built environment. Related: Sustainability, Energy, Water, Food, Resources.

GEO 123C Environmental Analysis and Modeling
Themes, case studies, and data analysis in environmental science. Related: Analysis, Modeling, Themes, Data.

GEO 282 Geographic Information Systems: Applications in Geographical Research
GIS methods to analyze and interpret geographic data, and to solve geographic problems. Related: GIS, Analysis, Interpretation, Problems.

ISF C101 Economic Geography of the Industrial World

ISF 100H Introduction to Media and International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 109H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.

ISF 110H Introduction to International Relations
Introduction to the foundations of sustainability most related to the restoration, design, and creation of landscapes and cities. Related: Sustainability, Restoration, Design, Landscape.