Joan Walker, Assistant Professor Civil and Environmental Engineering Global Metropolitan Studies

Understanding and Influencing Sustainable Behaviors:

Promoting energy conservation, recycling, and alternative transportation

Mapping Strategies to Outcomes & The Role of Behavior

Technology

Incentives

Marketing

Environment

Economy

Equity

Quality of Life

Outline

- Examples of programs to promote sustainable behaviors
- Modeling behavior
- Example of behavioral experiment and model
- Current research
- Conclusion

Examples of programs to promote sustainable behaviors

Waste Reduction

Berkeley program

Larger garbage cans cost more

FREE! Recycling

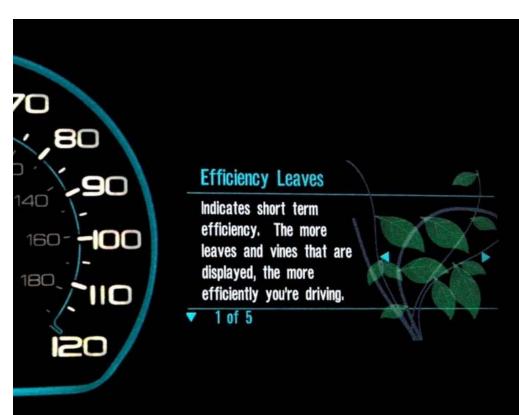
FREE! Green Waste

57% Diverted

Southern California Edison

- Efforts of Southern California Edison to encourage energy conservation
 - ■Emails and text messages regarding energy use
 No effect
 - Ambient Orb: red during high energy, green during low

40% reduction during peak periods


Thomson (2007)

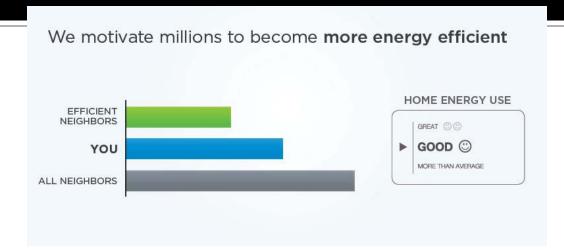
Driving green

- Ford efficiency leaves
- Honda Insight Hybrid leaves + score

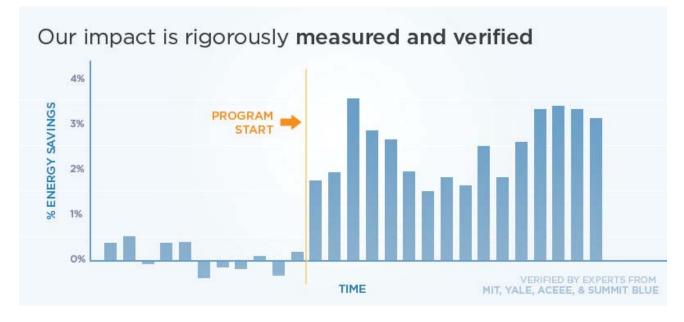
Impact?

- Focusing on mpg
 - 7 to 14% less gas consumption
- Honda with scoring
 - Avg 10%, max 20%

Energy Use Study in CA (Schultz et al., 2007)


- Feedback approach 1:
 Household energy use
 Avg energy use in neighborhood
- Feedback approach 2: Same as above, but with © 🖰

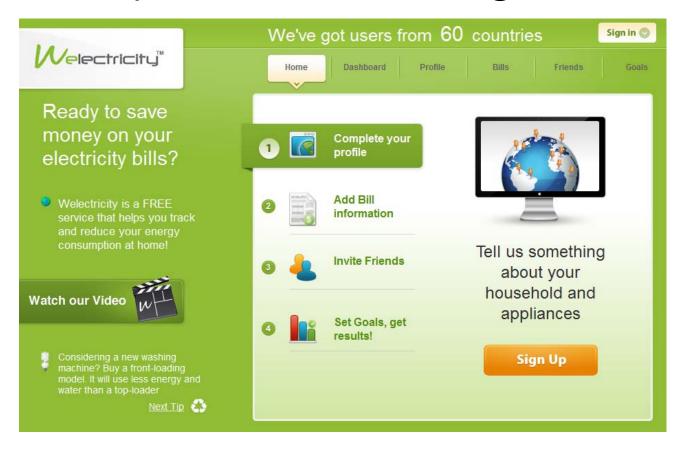
High users reduce, Low users increase


High users reduce more, Low users don't change

OPower

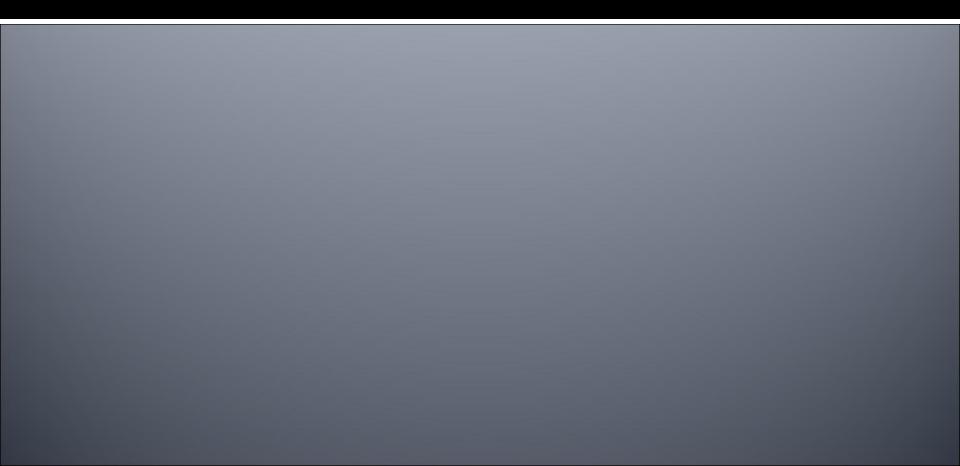
CO2 emissions reduced by 100,000 tons

\$18M saved


Energy Smackdown

- Boston Area
- Reality TV Competition between 3 towns
- 177 households saved 52 tons of CO2

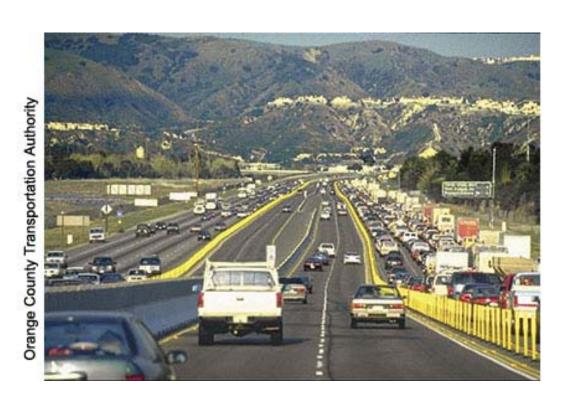
Welectricity


Energy Efficiency + Social Networking

Themes

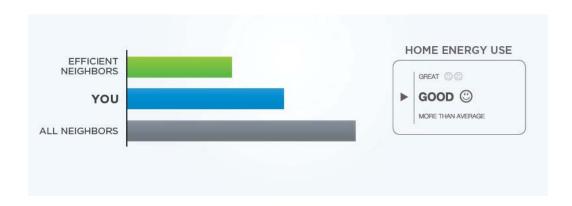
- Sticks and carrots
- Power of information and feedback... provided in creative ways
 - Visualizing impact
 - Augmented mindfulness
 - Social norms

Modeling Behavior



Economics & Rationality

- People act in their own interest
- They can objectively evaluate all alternatives available to them and then choose the one that is best for them.


Vive le Difference

Vive le Difference



 Detailed analysis shows works with some groups, backfires with others

(Costa and Kahn, 2010)

Economics + Statistics → Model

- Probability(person n recycles soda can)
 - = f(characteristics of the person& attributes of the environment)

Microeconomics review

- Basic concepts
 - Faced with a set of alternatives (consumption bundles)
 - Consumers are able to assign preferences that rank these alternatives in terms of attractiveness
 - Utility function represents mathematically these preferences.
 - Consumers make choices that maximize their utility (subject to a budget constraint)

Utility of a Transportation Mode

Utility function for bus

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus}$$

- $-WT_{bus}$ waiting time (hours)
- $-TT_{bus}$ total travel time (hours)
- $-C_{bus}$ total cost of trip (dollars)
- Parameters β represent tastes, and vary by education, gender, trip purpose, etc.

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus} / Income$$

Cannot be measured exactly

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus} / Income + \varepsilon_{bus}$$

Behavioral Model

Choice from among auto, bus, walk

$$P(auto) = \frac{e^{V_{auto,n}}}{e^{V_{auto,n}} + e^{V_{bus,n}} + e^{V_{walk,n}}}$$

$$\begin{split} U_{auto,n} &= \beta_{auto} & + \beta_2 T T_{auto,n} + \beta_3 C_{auto,n} / Income_n + \varepsilon_{auto} \\ U_{bus,n} &= \beta_{bus} + \beta_1 W T_{bus,n} + \beta_2 T T_{bus,n} + \beta_3 C_{bus,n} / Income_n + \varepsilon_{bus} \\ U_{walk,n} &= \beta_{walk} & + \beta_2 T T_{walk,n} & + \varepsilon_{walk} \end{split}$$

How do we estimate β s?

- Gather data from a sample of people
 - His/her mode choice to campus
 - His/her sociodemographics
 - His/her home and work location
 (→ travel time and travel cost of auto, bus, walk)
- Estimate the β s that best explain the observed choices.

Example application

- Joe has 3 options to come to campus
 - Auto: 4 min. walk, 8 minutes in car, \$4.50
 - Bus: 15 min. walk, 5 min. wait, 10 min in bus, \$4.00
 - Walk: 40 min. walk

His income is \$80,000

What is Joe's probability of driving?

Plug into
$$P(auto) = \frac{e^{V_{auto,n}}}{e^{V_{auto,n}} + e^{V_{bus,n}} + e^{V_{walk,n}}} \rightarrow P(auto) = 0.9$$

- What if campus doubles parking fees?
 - Update parking cost $\rightarrow P(auto) = 0.7$

Notion of tradeoffs

$$U_{bus} = ... + \beta_{time} Time_{bus} + \beta_{cost} Cost_{bus} + ...$$

Marginal rate of substitution between time and cost

$$MRS = \frac{MU_{\text{time}}}{MU_{\text{cost}}} = \frac{\partial U_{\text{bus}}}{\partial U_{\text{bus}}} = \frac{\beta_{\text{time}}}{\beta_{\text{cost}}} \frac{\$}{hour} \quad \text{Value of}$$
Time

$$U_{bus} = 1 + \beta_{time_wait} = 1 + \beta_{time_inveh} = 1 + \beta_{time_inveh} = 1 + \beta_{time_inveh} = 1 + \beta_{time_wait} = 1 + \beta_{time$$

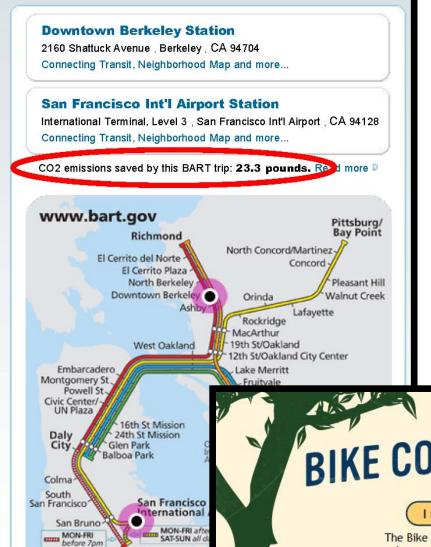
$$eta_{ ext{time_wait}}/eta_{\cos t}$$

→ Value of wait time :

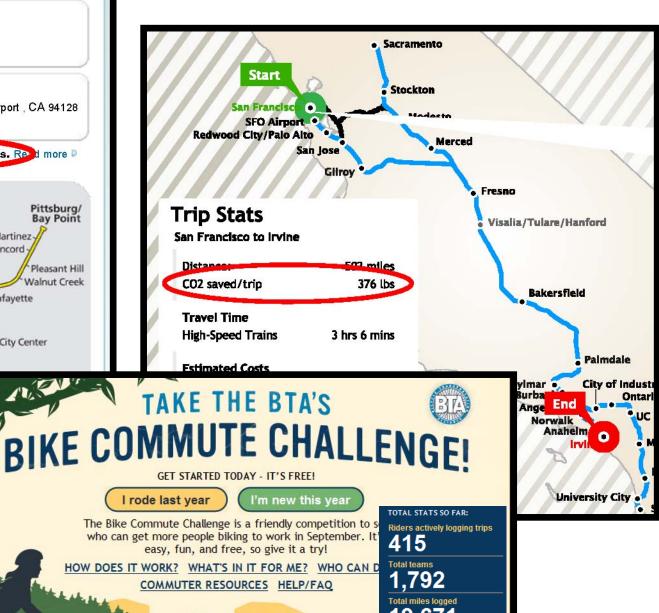
$$eta_{ ext{time_inveh}}/eta_{\cos t}$$

→ Value of in vehicle time :

Behavioral Economics


- Cross between psychology and economics
- Focus on what really influences decisions as opposed to what we think influences them
 - Emphasis on refuting rationality
- Clever experiments
- Hot area
 - Dan Arieli's Predictably Irrational
 - Richard Thaler and Cass Sunstein's Nudge

Overconfidence and Optimism


- What percent of drivers thing they are above average?
 - 90%
- What percentage of Professors think they are better than the average professor?
 - 94%

Example of Behavioral Experiment & Model

The Power and Value of Green in Promoting Sustainable Behaviors

Millbrae

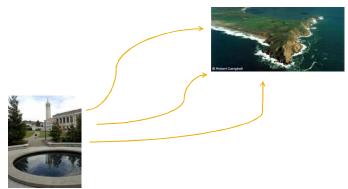
CO2 saved from the air (lb.)* 19,277

963,879

XLAB Experiments

- "Experimental Social Science Laboratory"
 - Subjects paid \$15/hour
- Our experiment
 - 312 respondents

Three experiments


Auto ownership

Mode choice

Route choice

Which car option would you choose?

- Scenario
 - Suburban house
 - Trip to work: 30 minutes by car, 60 minutes by transit

Attributes	Conventional Vehicle	Hybrid Vehicle
Purchase Price (\$)	16000	22000
Annual Cost (\$/year)	5000	4300
Greenhouse Gas Emissions (tons/year)	3.2	3.0

You may be interested in the choices made by some of your peers in the lab right now, which are displayed below:

- 4 of you peers chose conventional.
- 6 of you peers chose hybrid.
- 2 of you peers chose not to buy a car.

Conventional? Hybrid? No Car?

Which route would you choose?

Attributes	Route 1	Route 2	Route 3
Time (minutes)	70	90	90
Variation of Time (minutes)	12	18	5
Toll (dollars)	0.75	2.00	0.25
Greenhouse Gas Emission (pounds)	5	3	2
Safety	2	3	1

Experiment 3: Which mode would you choose?

Estimation Results from Route Choice Experiment

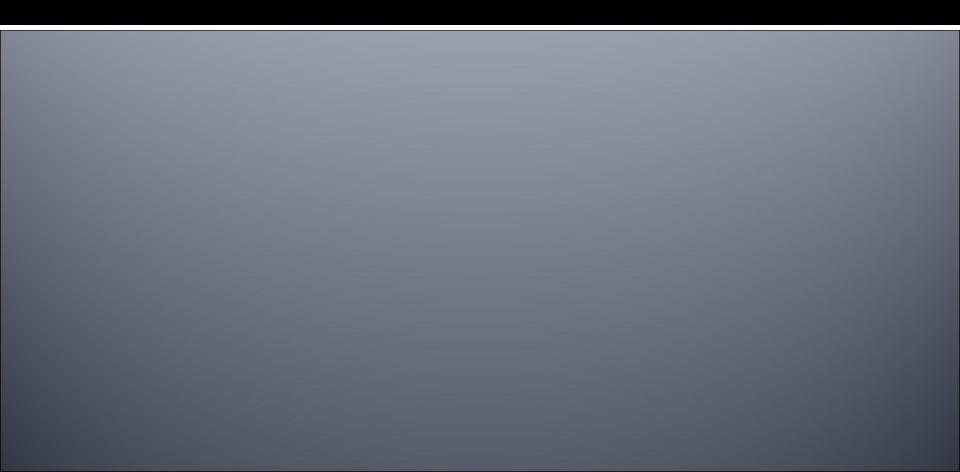
 $U_{r} = \beta_{1} TravelTime_{r} + \beta_{2} TravelTimeVar_{r} + \beta_{3} Cost_{r} + ... + \beta_{6} GHG_{r} + \varepsilon_{r}$

	Estimate	t-test	p-value	
Travel time (hours)	-4.317	-21.3	0.00	
Travel time variance (hours)	-2.400	-3.6	0.00	
Cost (\$)	-0.490	-10.5	0.00	
Safety dummy	0.620	12.8	0.00	
FREE! route dummy	0.640	4.8	0.00	
GHG emissions (pounds/trip)	-0.069	8.0	0.00	
Number of observations	334 subjects * 5 responses each			
Adjusted rho-square	0.412			

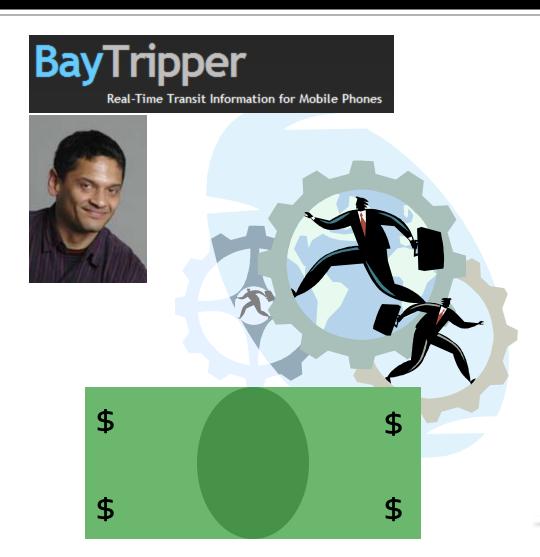
Calculating the VALUE OF GREEN

Marginal rate of substitution (MRS) between emissions and cost

$$= \frac{MU_{\text{emissions}}}{MU_{\text{cost}}} = \frac{\partial U/\partial \text{ emissions}}{\partial U/\partial \text{ cost}} = \frac{\beta_{\text{emissions}}}{\beta_{\text{cost}}} \text{ in units of cost/units of emissions}$$

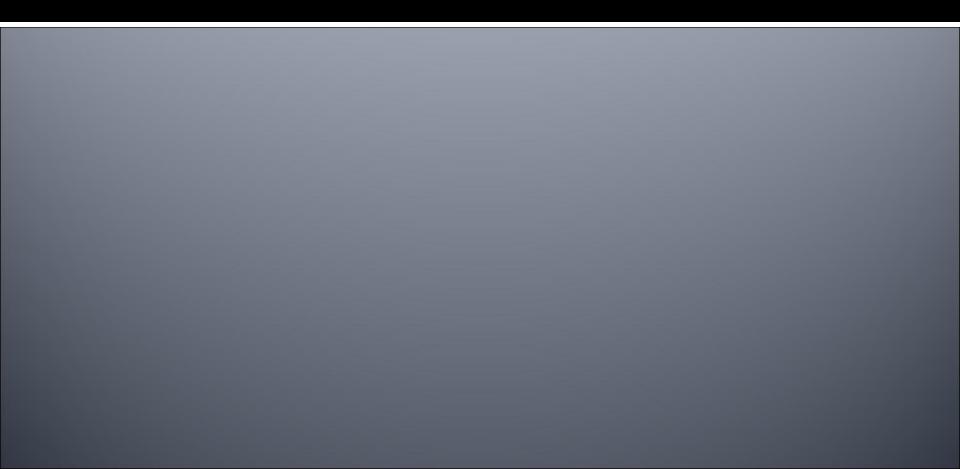

$$U = ... - 0.490$$
(toll cost in \$)

- -0.069(greenhouse gas emissions in pounds/trip)
- -4.317(travel time in hours)...
- →VALUE OF GREEN = \$0.14/POUND
- →VALUE OF TIME = \$8.81/HOUR


Findings

- Students value their time (on average)
 between \$6.50-\$9.00/hour
- Student value green (on average)
 between \$0.10-\$0.40/pound of CO2
 - Fairly consistent across many variations
- Females more green than males
- Social influences positively impact being green

Research Direction



Real people. Real money.

Conclusions

- Why concern regarding sustainability?
 - People!
- Why behavioral science?
 - Human response often dictates success or failure of policy
 - Cannot force actions
 - Anticipate actions of people, firms, developers, government
- Challenging
 - Dealing with humans... heterogeneous, irrational
 - Ignoring it is not an answer... must develop useful tools
 - Requires multidisciplinary effort